首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2019年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
For sequencing different models on a paced assembly line, the commonly accepted objective is to keep the operators within the boundaries of their stations. When the operators reach the right boundary, they terminate the operation prematurely. In this article we address the problem of sequencing jobs decomposed into identical and repeating sets to minimize the total amount of remaining work, or, equivalently, to maximize the total amount of work completed. We propose an optimum algorithm and a heuristic procedure that utilizes different priority functions based on processing times. Experimental results indicate that the proposed heuristic requires less computational effort and performs better than the existing procedures: On the average, 11–14% of improvements are obtained over real data mentioned in the literature (20 groups of 1000 jobs from a U.S. automobile manufacturer). © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44 : 419–437, 1997  相似文献   
2.
This paper considers the rescheduling of surface‐to‐air missiles (SAMs) for a naval task group (TG), where a set of SAMs have already been scheduled to intercept a set of anti‐ship missiles (ASMs). In missile defense, the initial engagement schedule is developed according to the initial state of the defensive and attacking units. However, unforeseen events may arise during the engagement, creating a dynamic environment to be handled, and making the initial schedule infeasible or inefficient. In this study, the initial engagement schedule of a TG is assumed to be disrupted by the occurrence of a destroyed ASM, the breakdown of a SAM system, or an incoming new target ASM. To produce an updated schedule, a new biobjective mathematical model is formulated that maximizes the no‐leaker probability value for the TG and minimizes the total deviation from the initial schedule. With the problem shown to be NP‐hard, some special cases are presented that can be solved in polynomial time. We solve small size problems by the augmented ? ‐ constraint method and propose heuristic procedures to generate a set of nondominated solutions for larger problems. The results are presented for different size problems and the total effectiveness of the model is evaluated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号